CTF, Gametype and Team mission objects

Version 1.1 - Last Updated: 13th July 2005

1 - GameRules object
The GameRules object is what determines the gametype that will be used. Missions without a GameRules object will be played as basic Deathmatch using pre-defined defaults so as not to break backwards compatibility. The GameRules object manages variables such as the game duration and victory conditions.

A GameRules object can be added to the mission by opening up the World Editor Creator, expanding the “Mission Objects” tree, then the “Mission” tree and clicking on “GameRules”. This will pop up a box that allows you to select the datablock for the GameRules object. The datablocks contain all the actual logic for calculating victory conditions, and also contain defaults for variables such as game length. Currently there are datablocks for CTF, Deathmatch, Team Deathmatch, and Objective based gameplay, just choose the datablock that corresponds to the gametype you want to use for the mission and click OK. Note: At this point, CTF is the only fully working gametype. DM, Team DM and Objective modes don’t the logic written yet to calculate victory conditions and as such aren’t really useable yet.
You will now see the GameRules object in the MissionGroup in the upper half of the World Editor Creator. If you swap to the World Editor Inspector and select it you can see its properties. Figure 1 is an example of a GameRules object using a CTF datablock with all its properties expanded. The properties in the Transform section don’t mean anything, as the GameRules object does not actually exist in the world as any kind of visible object. There are some dynamic fields that will be different dependant on the gametype datablock selected. For CTF there is a pointsToWin field which determines the number of points a team needs to claim a victory on points, and a gameLength field which determines the maximum time (in minutes) a game will run for. These start off set to the defaults defined within the datablock but can be changed to whatever is required.
If the GameRules object is using a team-based gametype (pretty much everything except plain Deathmatch), then Team objects will also need to be created before the mission will function as intended.

2 - Team Objects
The Team objects in a mission define the details of each team available for players to join in that mission. Different teams with different names and details can be defined for each mission if desired, and there is no hard-coded limit on the number of teams that can be included in a mission.
Adding Team objects to a mission is a two step process. First you must add a TeamGroup object to the mission, and then add Team objects to the TeamGroup (one Team object for every team in the mission). To add a TeamGroup to the mission, open the World Editor Creator and expand the “Mission Objects” tree, then the “Mission” tree, then click “TeamGroup”. A dialog box will popup but there are no fields to set for a TeamGroup object, so just click ok. You will now see an object called “TeamManager” in the top tree view of the World Editor Creator. Hold down the Alt key and left click on the TeamManager group to make it the active group so that Team objects can be added to it. The TeamManager group should now have a grey highlight behind it which shows it’s the currently selected group (see Figure 2).

Now Team objects can be added. To add a Team object, expand the “Mission Objects” tree in the World Editor Creator, then the “Mission” tree and select “TeamObject”. A dialog box will pop up asking for an Object name and a Team Name. Object name is the name that the Team object itself will be referred to using (for example, this is the name you would assign to any objects like turrets or flags that team-based so they can be linked back to the team). It should be a unique, one word name, for example “RedTeam”. The Team Name field is the name of the team how it will be displayed in game. This is the name that will appear on scoreboards and in in-game messages such as when a flag is captured. This name can be more descriptive and isn’t limited to only being one word long. Going with the previous example, the Team Name field could be set to “The Mighty Unstoppable Red Team”.
Figure 3 is an example of an expanded Team object. The fields under the “Classes” section should generally be left alone and don’t need to be modified. The “Dynamic Fields” contain fields for the Team Name (the one you set in the popup dialog) and the team’s current score. The teamScore field will automatically be managed by the game and incremented/decremented as necessary.
If you save the mission now and quite out and restart it, you will now get a Team Selection GUI popping up when joining the server and be assigned to the team you select. Make sure to set the active group back to the main mission group, if it’s not already, by holding the Alt key and clicking on the “MissionGroup” group. If you have chosen one of the more complex gametypes (such as CTF or an Objective driven gametype) you will now need to add the objects into your mission that these gametypes need to function (flags and/or objectives).
Technical Notes: Each player on a server has a team variable in their GameConnection object (i.e., %client.team). This team variable contains the id of the mission object representing the player’s team. This can be used for checks against objects which also belong to teams, such as turrets and flags, to see if the player is on the same team as the turret/flag/etc. As part of the team code, a function has been added to the GameBase namespace called CheckTeam(), so any game object which inherits from GameBase (which is pretty much everything, StaticShapes, Triggers, etc) can belong to a team and do a team check. The function takes an id of a team object, and checks it against the team the object itself belongs to. If the teams are the same, true is returned, otherwise false is returned. See base/scripts/server/common/gametypes/teams.cs for team related functions.

2.1 - Creating Team Spawn points

For a team based gametype, team specific spawn points will be expected to exist. If no spawn points exist or the team the player chooses, he/she is spawned by default in the middle of the mission.
The process for creating team spawn points is almost exactly the same in all regards as to how spawn points would normally be created. Normally, in a non team based game, the spawn points are contained within a group called PlayerDropPoints. Team based spawn points are also contained within groups, one group per team. The groups should have a unique name and the name must end with “DropPoints” to distinguish that group as a group of spawn points. For example, the group of spawn points for the red team might be called “RedTeamDropPoints”. A dynamic field must then be added to the group called “team”, and that field should be set to the name of the object that represents the team that the spawn points belong to (for the above example, “RedTeam”). Figure 6 shows an example of this.

Apart from the groups, the spawn points themselves are setup exactly the same as always. The spawning system works by looking for the group of spawn points belonging to the same team as the player wanting to spawn, then spawns the player randomly at one of the spawn points from inside that group.
3 - CTF Flags and Return Points

To create a game of CTF you will need to add Flag objects into the mission and triggers which act as “return points” for these flags. If a flag is carried to an opposing return point, this is when a capture is made and points are gained. Return points generally also act as the home for their flag. For example, when the Red flag is home it would be at the Red Return Point. A Blue player may then grab the Red Flag and carry it to the blue Return Point, thus making a capture and gaining points for his team, and the Red Flag would then reset back to the Red Return Point. For a working game of CTF there will need to be at least two teams setup in the mission, and one flag object and one return point per team.

To add a flag object into the mission, expand the “Shapes” group in the World Editor Creator, then the “flags” group, and click the CTFFlag object. A flag is just a customized Item object, and as such can be manipulated just like and shares all the properties of other Item classes. A name will need to be assigned to the flag object so that it can be linked to it’s return point. Open the World Editor Inspector and select the flag object that was just added. In the text box next to the “Apply” button type a meaningful, unique, one-word name for the flag object (such as RedFlag). This flag now needs to be linked to a team. This is done by adding a dynamic field called “team” and setting it to the name of the object representing the team the flag belongs to. For example, if this flag belonged to the Red Team that was created in the previous section, the team field would be set to “RedTeam”. Be sure to click the Apply button after making these changes to make sure they are properly added to the flag. Note: The value of the team field has to be the name of the team object itself, not the team name stored in the teamName field inside the object.
Figure 4 shows a finished CTFFlag object and all the required fields. As can be seen here the team field is set to “RedTeam”, the actual object name of the Team Object that represents the red team. pointsPerCapture is the number of points to award a team who captures this flag. The value of this field can be changed to suit the requirements of the mission. The other fields (originalRotation, originalPosition, isHome and mountedOn) are used internally by the CTF scripts and don’t need to be worried about.
Return points are triggers that use special CTFReturnPoint datablocks. To add a return point to the mission for the flag that was just added, open the World Editor Creator and expand the “Mission Objects” group, then the “Mission” group and click “Trigger”. A dialog box will popup allowing you to set some initial values for the trigger. Type a meaningful, unique, one-word name for the trigger (such as RedFlagReturnPoint) in the “Object Name” field and select CTFReturnPoint as the datablock in the “Datablock” field then click OK. The return point is now in the mission and should be visible as a trigger. A field now needs to be added to the return point to specify which flag is the “local” flag for this return point, ie, which flag considers this return point it’s home. Add a field called “localFlag” to the return point and set it to the name of the object representing the flag to be bound here. To stick with the example so far, the localFlag field on this return point would be set to “RedFlag”. Figure 5 shows an example of this setup.
The return point can be moved, resized and manipulated just like any other trigger. As soon as a player carrying another team’s flag enters the trigger area of the return point (and assuming that player’s team’s flag is at home) they will score a capture, so the trigger should be positioned and resized accordingly. The flag and the return point will need to manually be positioned as required, ie, the flag does not automatically return to the return point, it automatically returns to the position it was originally in before being captured. In a general CTF setup the flag would be positioned so that it is sitting in the middle of the return point area and would thus return there after being captured.
Now repeat this process once for every team in the mission, save your mission file and reload it and you should have a working game of CTF!
Figure 1 – Example GameRules object
[image: image1.jpg]3 1844: MissionGroup - SimGroup
1845: Wisioninfo _ Seipiblect
(1) 1848: Wisionirea - Missonarea
(1)147: Shy - Sy
(1) 1638: - Sun
() 1843: anain - TerainBlock

E31850: PlayerDiopPoints- SimGroup
162! utdoorTane - AudioEmiter
2024 Gameules- GameEaze

Apply [JoameRes
Expand Al Colapse Al
— Tesom

ostion [213.175 54 0468 223 414
staton (000

cale [T
W
ameTag

etaBlock CTFGameType
[Oyemereds

oristonin |
e eng |

Figure 2 – Example TeamGroup object

[image: image2.jpg]H1644: MissionGrous - SimGroup
1645: Wisioninfo _ SerpiOblect
() 1848: Wisionirea - MissonArea
(1) 1847: Shy - Sy
(1) 1838: - Sun
(1) 1643: arain - TerainBlock

E31850: PlayerDiopPoints- SimGroup

1652: outdarTane - AudioEmitisr
2024; GamaRules- GamsBase
2128: Teamhanager- Seiptoroup

Figure 3 – Example Team Object

[image: image3.jpg]EL1CES: MimionOroup_ SimOioup
1845: Misioninfo SerpiCblect
() 1838: Misionirea - Missinarea
(1) 1847 Shy - Sy

() 1638

Sin

(1) 1645: enain - TerainBlock

E31850: PlaverDiopPoints - SimGroup
1852: outdanrTane - AudioEmitir
1653 GameRules. GameBase

Eiyeaa:
-

eambanage - Seriptoroup
FedTean. ScipiObiact

1655: BlusTeam - SciptObiect

Apply [[Reateam
Expand Al Colspse Al | -

I Classes

class
superClass

| T —

teamiiame |

[Feamobect

[The A

g Red Team

Add

Figure 4 – Example Flag Object

[image: image4.jpg]B 1641: MissionGroup - SimGroup.
1842: Wisioninfo _ SerpiOblect =
(1) 1843: Wisionirea - MissonArea
(1) 1842 Shy - Sy
(1) 1835: - Sun
(1) 1698: erain - TerainBlock

E31847: PlaverDiopPoints - SimGroup
1640: outdanrTans - AudioEmitir
1650: GameRules- GameBase

E31851: TeamManager - Seriptoroup

1852 RedTeam - SeriptObiect

1653: BlusTaam - ScibtObiect

1 FedFlag_iem

Apply [[RedFiag
Expand Al Colapse Al [-

 restom
_ we |
_ we |
Dynamc Fietds
s

portspercapure AT |
mowedond [T]
orgnaPostion 000 |
it)
orginaiRctation A [000

con

Figure 5 – Example Return Point Object

[image: image5.jpg]= 1641: MissionGroup - SimGroup
1842: Wissioninfo _ SerpiCblect =
(1) 1843: Wisionires - Missionaea
(1) 1832 Shy - Sy
(1) 1635: - Sun
() 1898: erain - TerainBlock
E31847: PlaverDiopPoints - SimGroup
1840 outdaorTans - AudioEmitisr
1650: GameRules. Gamease
E31851: TeamManager - Seriptoroup
1652 RedTeam - SeipiObiect
1653: BlusT eam - SciptObject
2101: RedFla - fiam
2525 Reor 2gRetumPoint Tugaer

‘pply [[Feciagreturpomt |
Expand Al Colapse Al [-

Transform
visc

polyheeon (00000000 00000000 0000000

7 —

Add

bcalFlag i [Fedriag

Figure 6 – Example of team spawn points

[image: image6.jpg]B 1642: MissionGroup . SimGroup.
163, Mistonints Senptonact -
(1) 1844 WisionAres - Missonarea
(1) 1835: Shy - Sy
() 1648: - Sun
(1) 1847 anain - TerainBlock
E31848; BlueTeambropPains- SimGroup
F1050: GameRules - GameBase
E31851: TeamManager - Seriptoroup
1654: - TSState
1655: RedFiaaRetumPoint- Trlager
1858: RedFiag - tem
1657: - TSStatic
1658: BlusFlagRetumPoint- Tiigaer
BlucFla- ftem
RedTeamDiopPoints - SimGroun
1 Spaunsanere

T T I
Emial Compre]|
—r T —

Add

ean {

