Rock’s Server Admin Package V4.0

General Introduction

This document explains how Rock’s Server Admin Package is structured, how it works, and how you, as the server administrator, can go about hooking it into your own server. You don’t need to be a software guru to do this.

Rock’s Server Admin Package is based on player-selection, not vehicle-selection. When you, the Admin, wish to apply an admin action, you don’t have to target a vehicle. Instead, you use Rock’s Super Selector. Bad boys can no longer hide in the Wait Room.

Rock’s Server Admin Package is meant for Dedicated Servers, but it also works with Non-Dedicated Servers. I developed it because I got tired of jumping onto the game-server machine to enter cryptic SS-commands so that I could administer unruly players. There are too many good and pleasant players for me to waste my own game-playing time messing around with nasty people. This package lets me perform those admin duties from my own game-playing machine, not the server-machine. I can remain in the game and still administer the server. Administration information and status is displayed only in my chat window; no other player receives the admin info.

This package represents several evenings of initial effort, and about 3 years of evolutionary improvements and bug-fixes. Two or three days after I first finished this package, I heard of a pre-existing SSAdmin package that may have had some of the same features as mine. Oh well. I never found that package, so I don’t know what it did or didn’t do. Rock’s Server Admin Package is my own development completely from scratch, and it does the things that I want to do to my own server.

I figured that other server administrators might want some of the same capabilities, so I’m making this available for your general use. My only request is that if you propagate this package to others, that you propagate the entire unmodified package. Better yet, just send others to my web site so that they can download the latest and greatest version.

If you make functional or structural customizations then you’re on your own.

For comments, corrections, additions, etc., you can email me at HYPERLINK "mailto:rockd11@adelphia.net"

rock@rockshq.com.

Features of Rock’s Server Admin Package

Here is a list of most of the things you can do with Rock’s Server Admin Package. I’m always dreaming up more stuff to hook in here, but this is the list as it stands now.

· Works for both Dedicated and Non-Dedicated Servers.

· Includes Rock’s SuperScanner to help catch client-side cheat vehicles.

· Administration is performed from the admin-player's remote game-playing machine. The admin-player need not be located at the server to perform the admin duties.

· Admin-actions can be applied from the Wait Room because player selection is not done via targeting. Bad boys can no longer hide in the Wait Room.

· Automatic reconfiguration and restarting of the Server from the Admin’s remote location to support temporary Skirmish setups. (Dedicated Servers only)
· Single, or multiple admin players. All admin players are notified of general admin actions.

· Automatic password control of admin capabilities. The admin-player takes control from his remote game-playing machine. Control is automatically disabled if the admin-player leaves the game.

· Automatic routing of admin information to only admin-player chat windows.

· Automatic 6-way Banned-IP list verification: Checks incoming players against a file of permanently banned IP addresses and automatically gives him Rock's Big Boot if there's a match.

· Automatic addition of a player to the Banned-IP list. You don’t have to edit files or scripts to add a player to your Ban List.

· Automatic logging of game activity with either Rock's Game Log, or Starsiege's built-in game log facility.

· Automatic display of player's IP address in the admin-player's chat window as each player enters the game.

· Automatic detection and display of a stealth-player when they enter or exit a game.

· Automatic detection and monitoring for R99 server crashers. Upon detection of an offending player, the package automatically adds the player’s IP address to the Banned-IP list, and bans the player from the server.

· Automatic detection of unknown players. Politely rejects player-entry to those with ‘unknown’ as a name.

· Automatic detection and monitoring for inappropriate color-tags. Upon detection of an improper color-tag, the package ejects the player with a polite messageBox indicating his need to change his tags.

· Automatic detection and monitoring for idle players. An idle player is given a polite 60-second warning of ejection due to inactivity. This prevents Wait Room campers from consuming connection bandwidth.

· Automatic map randomization.

· Graceful Server resetting at the end of the Mission List. (Dedicated Servers only)
· Auto-Heal Algorithm after a fight, immediate or delayed.

· Extensions can be implemented to supplement the default admin actions.

· Admin-actions you can apply via Rock’s Remote Control from the admin player's machine:

· Issuing an automated warning to an unruly player

· Kicking unruly players

· Banning unruly players

· Ping a player from in-game

· Add a player to a permanent Ban List

· Cycling of the game to the next Mission

· Music On/Off and play custom music groups

· Reassign/reacquire admin capabilities to/from another player

· Enable/Disable the Auto-Heal Algorithm

· Enable/Disable the Game Logging facility

· Enable/Disable ATR-style of scoring

· Enable/Disable of the R99 Monitor

· Enable/Disable of the Color-Tag Monitor

· Enable/Disable of the Idle Monitor

· Display player info for an individual player

· Display player info for all players

· Explicitly Heal or Destroy a vehicle

· Reconfigure and restart the Game Server. (Dedicated Server only)
· Automatic Team Balancing in TDM/CTF servers

· Missile-rack limiter

· Modular design, well documented scripts, and easy retrofit to your server. The scripts don't contribute any noticeable lag.

· All of the above features are on/off switchable and configurable.

Usage

The discussions of usage in this section assume that your remote admin machine (not the server) has the same keybindings as the default bindings that I’ve set up in the RocksRemoteKeys.cs file.

Usage of Rock’s Server Admin Package is fairly simple. You setup the server machine with the package, then you setup one or more of your client game-playing machines with the keybindings in the RocksRemoteKeys.cs file.

To perform an admin action, you, as the server administrator must first take admin control (login) with the Alt-Shift-T key. Your chat window will display that you have gained Admin control.

Now you can apply any of the admin actions. Some of the actions are applied as a toggle, or as a game-wide action. Some of the actions are applied to an individual player and therefore require that you select a player first.

The typical method that some scripters use to select a player is to have you target a vehicle. But to do that, both you, and the player, would have to be in the game and close enough for you to target him. If either of you are in the Wait Room, one or more players cannot be selected… the Wait Room was considered a safe place for bad boys.

Not any more!

With Rock’s Super Selector, you select from a rotating list of players, instead of needing to be in the field to target a vehicle. In other words, the Super Selector is a player-based selection process, not a target or vehicle-based selection process. With the Super Selector, you or the player, or both, can be in the Wait Room… you can still select any player that’s in your server. You are no longer vulnerable to Wait Room campers. There is no place to hide in your server. However, since targeting a player on the field is also a very convenient selection process, Rock’s Super Selector will select the player within the targeted vehicle if you hit the Alt-v key. Again, this does not select the vehicle… it selects the player within the vehicle. Note that there are special circumstances concerning AI vehicles because AI’s don’t have players that can be selected. However, Rock’s Super Selector can handle AI’s too, using the same Alt-v vehicle selection key.

Every time you select a player, the player-list rotates and pops up the next player as the current selection. Your chat window will show exactly who is currently selected. You can select forward or backward through the player list.

The file RocksOnePager.doc contains a one-page chart, which you should print as a quick reference. These are the default key sequences that you, as the Admin, can enter to apply admin actions to a player. You’re welcome to rebind the keys (in the RocksRemoteKeys.cs file) to any set that you desire.

Some of the actions require you to select a player first (or sometimes the vehicle), whereas other actions are game-wide and don’t apply to a player.

The general sequence of events is to first take admin control (Alt-Shift-T), then select a player from the player list (Alt-up or Alt-down until you find him), apply the desired action (Alt-w, Alt-k, etc), then yield admin control (Alt-Shift-T) again. This last step of yielding admin control is simply to help prevent you from accidentally doing something to an innocent player. You may choose to not yield admin control.

Technical Introduction

If you’re looking for a document on how to write Starsiege scripts, this is not it. In terms of Starsiege script-writing, if you know the C programming language, and Perl-scripts or TCL-scripts, then you’ve got 95% of the knowledge that you need since all the same programming principles apply, with a few exceptions.

The big problem with scripting for Starsiege is the lack of good scripting documentation in terms of the details of what each script-function does, and how its function parameters are loaded. There are a few good documents out there, but most of the stuff I found on the net was too lightweight and incomplete for a one-stop understanding of what you could and couldn’t do with the Starsiege game. Out of everything I found however, the best was:

 MIB Scripting Tutorial written by Com. Sentinal [M.I.B.]
That tutorial was well written and my hat’s off to the author.

Eventually, after picking through dozens of examples, and playing around with the stuff myself, I was able to get a fix on what, when, and how things happen in the game.

Being a career software engineer, I applied standard engineering practices to the structure and design of this package. Accordingly, you will find that the scripts are highly commented, and visually easy to read, with detailed explanations of the various functions and methods. I know mechanically how script files are handled by the game, so I knew how to structure the package for easy hook-in and robust execution. The features and scripts in Rock’s Server Admin Package are not snippets from other people’s scripts… they are all written from scratch and integrated as a complete, unified design. They are meant to work together with the common goal of server administration, and they don’t contribute any game-lag.

The package consists of the basic Server Admin modules. This document talks about how to hook in the basic stuff. However, the package is extendable… you can add customizations to the basic operations via the extensions. There is an extension template file, RocksTemplateExt.cs, that you can copy to a filename of your choice and then just fill out the body of the functions if you would like to add something. Be aware that I only touch lightly on the details of extensions, but they are the proper place to hook in customizations and additional features that you may desire. You should know what you’re doing as a scriptwriter if you utilize the extensions.

You will not find any “toys” such as vehicle transporting, meteor dropping, AI-cloning, etc. These features are not Admin actions. If you wish, you can add those features yourself via the previously mentioned Extension mechanism supplied by the package.

I’m always available for questions either via email, or in my game. However, if you follow these directions to the letter, you should not have any operational problems.

Examples

If you look in the set of files in the package, you will see a few folders that hold files with names that start with the word “Example”. These files are just that… they are examples of how I set up DM, TDM, and CTF servers. You can copy the files to filenames of your own choosing, or use them as they are, and then edit the contents of them (using Notepad) to your own liking. Pay particular attention to the paths to the files.

There are typically 3 files in a server-set:

1. The xxxServer.cs file. This is the file that your desktop shortcut would point to so that you can conveniently start the server. This file holds the server-wide settings such as the server’s title, max number of players, time limit, server password, allowed vehicles and weapons, the map-list, etc. This file will execute the next file.

2. The xxxAdmin.cs file. This is the file that holds all of your Admin settings. This is where you configure all of the options that the Admin package permits, such as the autoheal, the R99 monitor, welcome message, etc.

3. The xxxExt.cs file. This is an optional file that holds any extensions that you may wish to add to the Admin Package. This file is not a necessary file. However, I have a few examples of its use. If you hook in any extensions, the extension’s filename must be entered into the proper entry in the xxxAdmin.cs file.

In each of the three files (the extensions being optional), you should use Notepad and visit each of the settings and set them according to your own desires. Pay particular attention to anything with the word “example” in it. Treat that as a flag that you should edit something there, or change it to something of your own choosing. I use the word “example” in several places in this document too. The same thing applies… it’s a flag to tell you that you need to make up your own name, and/or edit it.

You can change the names of the example-files, and edit their references in other files accordingly. For example, I have a set of the 3 files in my RocksStuff\DMServer folder called HeavyHercsServer.cs, HeavyHercsAdmin.cs, and HeavyHercsExt.cs.

Also note that some files, like RocksPassword.cs, RocksSkirmish.cs, might also contain some customizations that you might apply, but they are a one-time-only application. Therefore, their filenames should not change.

There are screen-shots in the Appendix for examples of the proper sequence of execution of files for a Dedicated Server. There’s a screen-shot for each of the TDM, DM, and CTF server-types. Your console output window should look the same except for the filenames and paths of your own xxxAdmin.cs, xxxServer.cs, and xxxExt.cs server-set files.

Rock’s Rantings

Some narrow-minded players will think that any win you can pull off is due to you playing on your own server. They won’t credit you for your own skill… it’s always ‘your server’ or ‘your lag’ that causes their loss. These people somehow think that they are otherwise unbeatable by anyone unless outside factors have effected the outcome. I have little tolerance for these rude people. With the server on a Cable Modem, lag is not the server’s fault, it’s the Internet’s fault, and to be more specific, it is the client’s problem, not the server’s. As a matter of fact, a laggy player may lag-out the game for everybody. However, laggy players are welcome in the game; it’s the rude player that deserves getting booted.

I do recognize that the server-side player has some small advantage. For that reason, I typically disqualify myself from the game scoring results, or I lay low in a game, but I still desire to play, and any victories that I can muster are not always due to any lag-advantage.

Make no mistake about it, I get my butt kicked by good players in my own server all the time, and I can do some serious butt-kicking in other people’s servers too. I can’t help network lag, I can only minimize it at my end. The point is good game-play goes beyond lag issues.

Rock’s Hardware Setup

The above diagram shows my current hardware setup. The Starsiege game-server is running on the Server Machine located in my basement, whereas my kids and myself actually play the game on one of the Client Machines located throughout the house.

The firewall, also in my basement, is simply a spare PC running a Linux-based professional-grade firewall software package called Astaro. You can check it out here http://www.astaro.com/. The Astaro software is installed on a separate 2.4Ghz P4 machine that I purchased just for a firewall application, although any spare machine lying around the house will do nicely. Astaro is free to the home user. It transforms a standard PC into a stand-alone firewall appliance. You can no longer use the machine as a PC. My first firewall of this type was a 233 Mhz Pentium MMX. If you have a spare machine lying around, I highly recommend this type of setup. Don’t throw those old PC machines away.

The cable modem is full-duplex, as are many modern cable modems today. Older cable modems are half-duplex. Half-duplex means you can transmit or receive, but not at the same time. Full-duplex means you can both transmit and receive at the same time. A full-duplex cable modem is a great improvement over half-duplex modems because it smoothes out the data throughput. By the way, the Astaro Firewall also contributes to the smooth data flow because it offloads the server machine from buffering network data.

For network cards, I highly recommend the Intel Pro-100/1000 series cards. Their drivers are much more robust than other cards. The card itself offloads some duties that the CPU would otherwise have to perform. All my machines, and the firewall, have these Intel NIC cards.

All of the machines, with the exception of the firewall, are running Win2000-Pro.

Here are a few diagrams that show various home network arrangements for a Game Server setup:

[image: image1.png]
A Setup I Don’t Recommend

I used to use a little 4-port gateway router/switch from Linksys, setup as in Figure A or B above. There are several makers of similar units: Netgear, SMC, and DLink, to name a few. These little routers, all at the same price-point of $50-$100, are great for browsing web sites and sending email, but they can’t handle the throughput of gaming. That’s because their internal NAT translation tables overflow due to the heavy UDP-packet activity that games generate.

My Linksys router always caused invalid packets, apparent instant player movement of several meters (teleporting) and accidental kicking of players from the game. This is all due to packet corruption and packet loss. When the translation tables overflow, what do you think the router does with the extra packets? It does the only thing it can do… it drops the overflow on the floor, and there goes your player, kicked right out the exit door. The packet corruption is more frequent during player combat (heavier load,) and it gets worse as more players enter the game.

I tried the Netgear router too, but I couldn’t get it to drop its firewall to enable the game to be seen on the Internet; and the Netgear people couldn’t either, so that went back to the store.

This sort of equipment is okay for one person playing the game, but not for serving the game.

A little research on the Internet reveals that all of these units suffer from the same problems to varying degrees. The problem stems from the chipset-technology that they use to implement the router. You would have to ratchet the price up a notch and get a better quality unit to avoid these problems. I think the SonicWall unit (about $500) would handle everything okay because it uses different technology than the other units, although I haven’t tried it for gaming; but for that kind of money you can set up the multi-machine arrangement exemplified in Figures C and D. You don’t need the dual-processor beast that I use for a server… anything 300 Mhz or faster should be fine. The multi-machine arrangement is much more robust, powerful, and flexible.

Admin Software Setup

Here’s where you get into the meat of Rock’s Server Admin Package. I’m assuming you already know how to setup and start a dedicated or non-dedicated server since instructions come with the game.

I’m not going to give a detailed explanation of the scripts in Rock’s Server Admin Package. You should look in the files themselves to glean any implementation information that you desire. It is very well commented and I don’t think you will have any problems following along.

The design philosophy of the software is to modify the original Starsiege game files the absolute least amount. Indeed, on the server side, the only standard Starsiege files that we touch is the DMstdLib.cs file (for DM and TDM play) and the CTFstdLib.cs file (for CTF play) in the multiplayer directory, and even then, we only add one line at the very bottom. On the client side, the only file that we touch is the autoexec.cs file. Again we add only one line at the bottom.

Warning: In all of the following instructions, every time you are prompted to edit a line in a file, you must edit the line manually. Do NOT cut and paste it from this document because the text in this document is formatted and you will get syntax errors when the script runs. All .cs files should be edited with Notepad. Do not use WordPad either.

The immediately following instructions apply to a Dedicated Server. If you intend to use the package on a Non-Dedicated Server, then skip to the section labeled Client-side Setup (Dedicated or Non-Dedicated Servers).
Server-side Setup (Dedicated Servers)

Skip this section if you are doing a Non-Dedicated Server.

To summarize the server-side setup for Dedicated Servers: In the Starsiege directory, you will make a separate subdirectory, called RocksStuff, where we are going to do this work so that we don’t mess with the normal Starsiege installation. In the RocksStuff subdirectory, we will setup your server file to load Rock’s Server Admin Package. Then we will edit one line into the bottom of the DMstdLib.cs file, and a similar line into the bottom of the CTFstdLib.cs file, both of which are located in the ./Starsiege/multiplayer directory. Next, you will enter your own password so that only you can use these admin features. Finally, you will set all of the various Admin Setup variables in the xxxAdmin.cs file.

To hook in Rock’s Server Admin Package on the server-side machine, perform the following steps:

1. Unzip RocksServerAdmin.zip into a Starsiege subdirectory called RocksStuff. The resulting files should be located in the ./Starsiege/RocksStuff directory. Thus we create a separate directory to keep from polluting our original Starsiege installation.

2. Find out which server file you are going to be using. Let’s use the DMServer/ExampleDMServer.cs as an example. The ExampleDMServer.cs file is simply a wrapper file around the Server_DM_ALL.cs file so that I don’t have to edit the original. Instead, the ExampleDMServer.cs file executes the Server_DM_ALL.cs file and then it overrides some of the settings to accomplish my own configuration. I recommend you do the same.

A brief tour of the ExampleDMServer.cs file: If you look in the ExampleDMServer.cs file, (use Notepad) you will see that it execs Server_DM_ALL.cs to get the standard game setups. Then it modifies some of the standard gaming parameters like FragLimit, MaxPlayers, etc., to customize the game for my needs. Obviously, you can change these to suite your own needs.

Further down, I modified the Mission list (the map list), editing out all of the overly large Mission maps. The file then overloads the setAllowedItems() function (because this function was also in the Server_DM_ALL.cs file) with a version of my own so that I can more easily enable or disable groups of Hercs, Tanks, or Weapons.

Finally, it execs RocksStuff/DMServer/ExampleDMAdmin.cs to get the Admin Functions loaded. Note that the Admin package is loaded last, after the standard server setup because it needs some of the items like the server-name and mission-name for the Rules Tab.

Now back to the business at hand. You can name your server file anything you want. The easiest way is to simply copy one of the xxxServer.cs files to another file of your own name. Let’s say you copied ExampleDMServer.cs to MyBigDMServer.cs in the RocksStuff/DMServer folder. You would edit this new file to configure stuff like the map list, the time limit, weapons or vehicle restrictions, etc.

Now that you have your server-file, you should make a shortcut for it on your Desktop. The shortcut that starts a dedicated server tells Starsiege which file to use for the game-server file. This original, game-installed shortcut is located under your Start button in Start->Programs->Dynamix->Starsiege->Start Dedicated Server. You should right-click on it and drag it out (right-drag) to your desktop and then select “Copy” or “Create Shortcut” to drop the icon on your desktop. Then right-click on the new icon and select Properties. You can see the game-file referenced at the end of the command line. Change the referenced server file to be your new server file, MyBigDMServer.cs. It should look something like this, all on one line:

"C:\Program Files\Dynamix\Starsiege\Launch.exe" infiniteSpawn starsiege -s RocksStuff\DMServer\MyBigDMServer.cs

3. If you did everything in Step 2 above, then you can skip this step. However, if you decide to implement your own server file instead of just copying the ExampleDMServer.cs, or if you use one of Starsiege’s original game-server files directly, like Server_DM_ALL.cs or Server_TDM.cs, then you need to add the following line to the bottom of your server-file.

exec(“RocksStuff\\DMServer\\ExampleDMAdmin.cs”);

This is the key line that gets the Admin Package loaded. Note the double slashes, and the double quotes, and don’t forget the semicolon on the end.

4. First a little explanation: We have to overload various standard game functions, like OnAdd(), OnRemove(), etc. with our own versions that are in the RocksDMlib.cs file and RocksCTFlib.cs file. The versions in Rocksxxxlib.cs are simply direct copies of the standard functions with one line added to each of them. This one line in each function redirects the standard game execution threads to functions within the Admin Package. However, this overloading has to happen with every new Mission.

When each new Mission loads, it execs the appropriate file in the ./Starsiege/multiplayer directory. If you look in DM_Terran_Conquest.cs for example, at the top of the file you will see that the Mission executes two files: first the multiplayStdLib.cs file, and then the DMstdLib.cs file, in that order. Indeed all DM and TDM Missions execute these two files in that order.

For CTF, the game executes multiplayStdLib.cs and CTFstdLib.cs, in that order.

Therefore, we need to insert a line at the bottom of the DMstdLib.cs file and the CTFstdLib.cs file, which are both located in the ./Starsiege/multiplayer directory. Don’t forget, edit it manually, do NOT cut and paste it.

At the bottom of the DMstdLib.cs file, add the following line:

exec(“RocksStuff\\RocksDMlib.cs”);

At the bottom of the CTFstdLib.cs file, add the following line:

exec(“RocksStuff\\RocksCTFlib.cs”);

The above lines cause the Admin Package to get into each new map when it map-cycles. Note that these lines are different from each other, and make sure you get the correct line in the correct file. Again, don’t forget the semicolon on the end, the double slashes, and the double quotes.

5. You need to pick a password so only you can obtain admin capability when you want it. The RocksPassword.cs file holds your password with a line of the form:

$RocksPassword = “YourOwnPassword”;

Edit the RocksPassword.cs file and enter your own unique password. This same file will be used by the keybindings in the RocksRemoteKeys.cs file so that the password on both the server-machine and your own remote-machine will match.

6. Finally, edit your xxxAdmin.cs file. This file contains global variables that are used to configure the overall Admin operations. Each variable is described in detail. You should carefully visit each variable and assure its setting is correct for your desired server environment.

This completes the server-side setup. Check out the screen-shots in the Appendix for the proper sequence of execution of the files.

Now skip to the next section labeled Client-side Setup (Dedicated or Non-Dedicated Servers).
Client-side Setup (Dedicated or Non-Dedicated Servers)

To use all of the features in Rock’s Server Admin Package, you have to be on a client-side machine or be the host on a Non-Dedicated Server. The client could be running on the same machine as the game-server, which is a common practice. Regardless of which physical machine you play the game on, I will refer to it as the Client Machine, or game-playing machine. If you are running a Non-Dedicated Server, then you are also a client. Your Non-Dedicated Server is performing both client and server duties.

Note that you can have several client machines with this same client-side setup. Indeed, as the administrator, you may wish to give admin control of your server to some other players. Those other players will also need to have the same client-side setup if you want them to be able to perform the admin functions from their location.

The only two files another Client Machine requires, if they are to be an Admin, are the RocksRemoteKeys.cs file and the RocksPassword.cs file. They do not need the whole Admin Package and other server-side files.

Note: A little-used feature of the package is that an Admin can “assign” Admin access to another player without giving him the password. As long as that other player stays in the server, and has the RocksRemoteKeys.cs file, he will be able to perform all of the Admin actions. However, as soon as he leaves the game he will lose Admin privileges. To use this feature, you should NOT give the player your RocksPassword.cs file. Giving the player your password file enables him to take Admin control on his own, without you needing to be there to assign it to him.

The client-side setup involves the following steps:

1. Make a new RocksStuff subdirectory (folder) under the Starsiege directory on the client machine.

2. Place a copy of the RocksRemoteKeys.cs file into the RocksStuff folder.

3. If this client machine will not have direct admin control (versus assigned control,) then skip this step and go to step 4. Otherwise, place a copy of the server’s RocksPassword.cs file (that you edited in step 5 of the server-side setup) into the client’s RocksStuff subdirectory.

4. Add the following line to the bottom of the client’s autoexec.cs file located in the ./Starsiege/scripts folder:

exec(“RocksStuff\\RocksRemoteKeys.cs”);

Be aware that some of the Admin Key bindings may be overridden by your game key bindings. If that is the case, you will need to reassign one or the other. To reassign an Admin Key binding, you should use Notepad and edit the RocksRemoteKeys.cs file. I’ve chosen key-bindings that are not normally used by the typical Starsiege setup.

This completes the client-side setup.

Server-side Setup (Non-Dedicated Servers)

Skip this section if you are setting up a Dedicated Server.

If you are setting up a Non-Dedicated Server, make sure that you first perform the steps in the section labeled Client-side Setup (Dedicated or Non-Dedicated Servers).
To summarize the server-side setup for Non-Dedicated Servers: In the Starsiege directory, you will make a separate subdirectory, called RocksStuff, where we are going to do this work so that we don’t mess with the normal Starsiege installation. In the RocksStuff subdirectory, we will setup your server file to load Rock’s Server Admin Package. Then we will edit one line into the bottom of the DMstdLib.cs file, and a similar line into the bottom of the CTFstdLib.cs file, both of which are located in the ./Starsiege/multiplayer directory. Next, you will enter your own password so that only you can use these admin features. Finally, you will set all of the various Admin Setup variables in the xxxAdmin.cs file.

To setup Rock’s Server Admin Package for Non-Dedicated Servers, perform the following steps:

1. Unzip RocksStuff.zip into a Starsiege subdirectory called RocksStuff. The resulting files should be located in the ./Starsiege/RocksStuff directory. Thus we create a separate directory to keep from polluting our original Starsiege installation.

2. First a little explanation: We have to overload various standard game functions, like OnAdd(), OnRemove(), etc. with our own versions that are in the RocksDMlib.cs file and RocksCTFlib.cs file. The versions in Rocksxxxlib.cs are simply direct copies of the standard functions with one line added to each of them. This one line in each function redirects the standard game execution threads to functions within the Admin Package. However, this overloading has to happen with every new Mission.

When each new Mission loads, it execs the appropriate file in the ./Starsiege/multiplayer directory. If you look in DM_Terran_Conquest.cs for example, at the top of the file you will see that the Mission executes two files: first the multiplayStdLib.cs file, and then the DMstdLib.cs file, in that order. Indeed all DM and TDM Missions execute these two files in that order.

For CTF, the game executes multiplayStdLib.cs and CTFstdLib.cs, in that order.

Therefore, we need to insert a line to the bottom of the DMstdLib.cs file and the CTFstdLib.cs file, which are both located in the ./Starsiege/multiplayer directory. Don’t forget, edit it manually, do NOT cut and paste it.

At the bottom of the DMstdLib.cs file, add the following line:

exec(“RocksStuff\\RocksDMlib.cs”);

At the bottom of the CTFstdLib.cs file, add the following line:

exec(“RocksStuff\\RocksCTFlib.cs”);

Note that these lines are different from each other, and make sure you get the correct line in the correct file. Again, don’t forget the semicolon on the end, the double slashes, and the double quotes.

Thus, with every new Mission, we will automatically get the Admin Package hooked into the next map.
3. You need to pick a password so only you can obtain admin capability when you want it. The RocksPassword.cs file holds your password with a line of the form:

$RocksPassword = “YourOwnPassword”;

Edit the RocksPassword.cs file and enter your own unique password.

4. Edit the xxxAdmin.cs. This file contains global variables that are used to configure the overall Admin operations. Each variable is described in detail. You should carefully visit each variable and assure its setting is correct for your desired server environment
5. Edit the RocksRemoteKeys.cs file and find the binding for the Alt-Shift-J key near the bottom of the file. It references the DMServer/ExampleDMAdmin.cs file. You need to change that to whatever filename you used in step 4 above.
6. This completes the server-side setup for Non-Dedicated Servers.
7. This step is very important! When you start Starsiege to run your Non-Dedicated Server, but before you create the game with the Create Game button, you must hit the Alt-Shift-J key sequence.

This loads the Admin Package for proper operation in your Non-Dedicated Server. Make sure you do this before you hit the Create Game button. Once the package is loaded, the Alt-Shift-J key will automatically unbind to prevent an accidental reload of the package because loading the package more than once would cause problems.

Now go ahead and hit the Create Game button and configure your Non-Dedicated server as you usually do.
The Ban List

The Ban List feature in Rock’s Server Admin Package is many times more flexible than other ban list implementations. Other permanent banning schemes usually require that you manually edit a script to add a player’s IP address. The scheme I use eliminates much of the manual editing, although you may indeed edit your Ban List if you wish.

The Ban List is stored in a file in the Starsiege directory, not the RocksStuff folder. You set the name of the file in the xxxAdmin.cs file. If you add a player to your Ban List with the Alt-Shift-B key (I call it blisting), the IP address and the file entry are automatically formatted and appended to the Ban List file. However, you should be aware of the following issue, which has to do with dynamic IP addresses.

When Starsiege returns the IP address of a player, it returns a string of the form:

IP:192.168.1.101:12345

The last group of numbers, 12345, is the port number, but it will always be recorded in the Ban List file as a zero. Since a player’s port number always changes, the AutoBan will ignore it when testing the player’s current IP against all IP’s listed in the Ban List file.

Note that though we ignore the port number, the AutoBan also needs to ignore the next minor subnet field, 101, as well. Here’s why:

A savvy BadBoy could change his IP address and reenter your game just to tick you off. However, since this is Internet traffic, his IP address isn’t likely to change beyond the minor subnet value. Thus, he may be able to change 192.168.1.101 to 192.168.1.102, but that’s about the limit. Indeed, dynamic IP addresses and DHCP do this under normal circumstances. Outside of changing his position on the globe or changing ISPs, BadBoy will likely be able to change only his minor subnet field. Therefore, the IP comparison will ignore that field too. If the upper three fields of the IP match, then the player will be AutoBanned. The Ban List file, however, will have the entire IP recorded, with the port number set to zero.

BadBoy can have any minor subnet (the fourth field number – 101) and he won’t get into your server. He would have to get his ISP to change one of the other higher-level subnets, and it takes more effort and time to do that.

A minor one-line editorial change in your Ban List (yes, edit it manually) can cause the comparison to also ignore the next sub-field. However, a subnet field represents 256 addresses, and two subnet fields represent 256 times 256 addresses, or 65536 players. If you set the two lowest subnet fields to 0 in your Ban List, for example 192.168.0.0:0, then you would block any other player that essentially uses the same ISP as BadBoy, or even those that may live in the same general location as BadBoy.

Ultimately, you can just keep adding BadBoy’s new IP to the RocksBanList.cs file. It’s easier for you to Alt-Shift-B the guy (blist him) than it is for him to change his IP address.

Don’t forget; Alt-Shift-B just adds the player to the Ban List, it doesn’t ban them. You still have to initially eject BadBoy from your server with the Alt-b or Alt-k key.

Some Ban List optimizations

The Banning routine in the Admin Package is very flexible. It provides 6 different methods, and combinations thereof, for you to control entry to your server. Two of the methods I’ve already mentioned, but I’ll review them here anyway, along with the rest of the methods.

For this description, I’ll use the following standard Ban List entry as the example:

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:192.168.1.123:0";
$BanCount++;

Here are the 6 methods used to control entry to your server. It is common to use several of these methods in combination. Note: The first entry-method that matches is the one that results in action.

4. Standard Blisting: This is the default automatic ban method used by the Admin Package. It ignores the player’s name and bans based on the IP alone, with the least subnet (123) automatically masked out by the Admin Package. Therefore, anyone with an IP of 192.168.1.xxx will be blocked. You use your Ctrl-Shift-B key to blist the bad boy, and then you kick him from your server. The following is an example of an automatic blist-entry in your Ban List

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:192.168.1.123:0";
$BanCount++;

5. Masked IP Ban: Some people think this method is too strong because it blocks a much larger set of IP addresses. If there aren’t many players of the game (because of the age of the game), then the likelihood of several players having an IP within the same block is slim. Therefore, this method more easily blocks a player if his IP address changes, because it would likely change to another address within the same subnet.

As noted in Standard Blisting above, the lowest subnet is automatically masked out by the Admin Package, but you can manually edit your Ban List to set other, higher subnets to zero. You have to set the subnets from the lowest to the highest. Note that setting just the first subnet to 0 is the same thing as the typical Standard Blisting and would result in no change. Therefore, you need to set at least the lower two subnets to zero. But you could set the third field to 0 and ban the whole Class-A IP Block.

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:192.168.0.0:0";
$BanCount++;

6. Name Ban: This is the weakest ban method since obviously the player can simply change their name and get back in. You would typically use this method in combination with some of the other methods. This method uses the string-to-lower function to make a case-insensitive comparison... AND it looks for the substring within the player's name. If you include spaces or special characters then it will look for those too. To do a Name Ban, manually edit the Ban List Name entry, and then place the letter “N” in front of the “IP” like so:

$BanName[$BanCount] = "Bad";
$BanIP[$BanCount] = "NIP:192.168.1.123:0";
$BanCount++;

The above example will block anyone with the letters “bad” in their name. This means it will block BadBoy, Big BAD Momma, MyBad, Abadul, and anyone else with those three grouped letters in their name. Despite the fact that the IP is listed in the entry, the IP is ignored. When I use the Name Ban, I edit the IP entry like the following, so that it stands out in my Ban List, and it’s easier to see:

$BanName[$BanCount] = "Bad";
$BanIP[$BanCount] = "NIP:255.255.255.255:0";
$BanCount++;

If you want to Name Ban a name that has a backslash in it, like \BadBoy, then you have to “escape the backslash” in order to add it as a single character. That’s because the escape character is also the backslash character. To add two backslashes to the string, you would have to escape BOTH of them, like so:

$BanName[$BanCount] = "\\\\Bad";
$BanIP[$BanCount] = "NIP:192.168.1.123:0";
$BanCount++;

7. Focused-Subnet Ban: This is an IP-ban that is similar to the Masked IP Ban, but instead of banning the entire subnet, it lets you ban SOME of a subnet. This makes it more focused than a Masked IP Ban. You would use this in a situation where you have more than one player (look in your log) within a block of addresses, and you don’t want to block all of them, which a Masked IP Ban would do. Essentially, you just chop off some right-part of the IP address in the entry. To do a Focused-Subnet Ban, manually edit the Ban List IP entry, and then place the letter “S” in front of the “IP” like so:

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "SIP:192.1";
$BanCount++;

This will ban all IPs of 192.1xx.xxx.xxx. Anyone with an IP address that starts with the digits 192.1 would be blocked. Everyone else would get in.

8. And Ban: This is the logical-AND of methods 3 and 4, all on the same entry. If the Name Ban matches AND the Focused-Subnet matches, then the player will be blocked. To do an And Ban, manually edit the Ban List Name entry as you would in the Name Ban, and edit the IP entry as you would in the Focused-Subnet Ban, and then place the letter “A” in front of the “IP” like so:

$BanName[$BanCount] = "Bad";
$BanIP[$BanCount] = "AIP:192.1";
$BanCount++;

This will block all players with IPs that start with the digits 192.1 AND have the grouped letters “bad” in their name.

9. Passkey: This type of entry is not a Ban at all. It’s a Pass to get into your server. That means that the listed IP with be admitted to your server regardless of the other ban entries. You can use this method when, say, you’ve blocked a whole subnet with the Masked IP Ban method, yet you want to permit entry of someone who’s IP is within the blocked subnets of the Masked IP Ban. You must place all Passkeys at the head of your Ban List, otherwise one of the other methods may block the player. This is because the first ban list entry that matches is the one that results in action.

Note: Although a Passkey permits entry, it is not the same as a RAKey. A Passkey is only necessary because some other Ban List entry would block the player otherwise. Also, a Passkey becomes useless if the player’s IP changes beyond the second subnet. RAKeys, however, are MUCH stronger, they are foolproof, and they always work regardless of the player’s IP address. RAKeys are part of the RAK Pack, also available at www.rockshq.com.

To do a Passkey, you manually add another entry at the head of your Ban List, edit the IP to be the player’s IP, and then place the letter “P” in front of the “IP” like so:

$BanName[$BanCount] = "GoodBoy";
$BanIP[$BanCount] = "PIP:192.168.1.123:0";
$BanCount++;

With all of these methods, you need to go through your Game Log and see who has the various IPs, Sub-IPs, or Name-substrings. This will reveal the best method, or combinations of methods, to use.

A Banning Example

Let’s say I’m in my server and there’s a player named BadBoy who’s using foul language despite warnings for him to stop. I first blist him with Alt-Shift-B to automatically make the entry in my Ban List. Then I kick him with Alt-k to eject him from the server.

Later, when I get some time, I look in my log and I see that BadBoy’s IP is 12.75.170.186. However, I also see that BadBoy has yet another service-provider and therefore has another IP, 24.94.49.155, that he sometimes uses. So, I need to strengthen the block against BadBoy, and I also need to scrutinize two IPs.

A little more looking in the log (I use grep, a free Linux/Unix-tool to do this, but it runs on Windows too), and I see that several other players are at 12.75.17x.xxx, and 12.75.84.xxx, so I can't use a Masked IP Ban to block the whole subnet under 12.75.xxx.xxx. Furthermore, over time, I notice that BadBoy has had several different IP addresses all between 12.75.170.xxx and 12.75.172.xxx, but there is only ONE other player, GoodBoy, at 12.75.182.12.

More study of the log reveals that when BadBoy has the 24.94.49.155 address, it never changes. So I decide to make the following three entries to block BadBoy yet admit GoodBoy.

The first entry is at the head of my Ban List, along with all my other Passkey entries. This assures that GoodBoy can get in.

$BanName[$BanCount] = "GoodBoy";
$BanIP[$BanCount] = "PIP:12.75.182.12:0";
$BanCount++;

The next two entries can be placed anywhere in your Ban List, but after the Passkey entries. The first is a Focused-Subnet Ban, and the second is a Standard Blisting entry.

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "SIP:12.75.17";
$BanCount++;

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:24.94.49.155:0";
$BanCount++;

Alternately, I could keep the GoodBoy Passkey entry as is, and make 4 Standard Blisting entries against BadBoy, one for each IP that he uses. Note that using 2 entries is better than using 4 because the script execution is more efficient:

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:12.75.170.0:0";
$BanCount++;

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:12.75.171.0:0";
$BanCount++;

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:12.75.172.0:0";
$BanCount++;

$BanName[$BanCount] = "BadBoy";
$BanIP[$BanCount] = "IP:24.94.49.155:0";
$BanCount++;

The Game Log

There are 2 game logs available. One is the standard Starsiege log facility. The other is Rock’s Game Log. Rock’s Server Admin Package will automatically enable one or the other for you, but not both at the same time. Rock’s Game Log is enabled by default. Of course, you can automatically enable or disable the logging facility, regardless of which one you use, from your remote client machine with the Alt-Shift-L key.

You might disable log activity to keep your performance maximized. Be advised that, depending on your computer speed, logging may cause game-lag every time an event is written to the log file, but it’s not usually a problem. Almost everyone uses the log facility. The log is where you find IP addresses of unruly players.

The Starsiege log that came with the game will log all kinds of stuff, and it will do it often. The log is fairly extensive and rather cluttered and difficult to read, but it includes all sorts of information. If you’re performing squad events, then you might want to use the standard Starsiege log since its log represents a complete record of the event. It also records the final scores at the end of a Mission.

Rock’s Game Log doesn’t log all the stuff that Starsiege will log. As an administrator, I’m more interested in who entered the game, what their IP address was (in case they belong in the Ban List) and when they entered and exited the game. Rock’s Game Log also records all of the admin functions that I’ve performed, if any, during the course of a game. This lets me keep tabs on the unruly players. Rock’s Game Log is also easier to read than Starsiege’s game log, but that’s because less information is logged, and it is logged less frequently.

You can choose which log to use, and enable/disable it, by editing the $RocksAdminLog and $RocksSSLog global variables in the xxxAdmin.cs file. There’s a detailed description of what to do in that file.

The R99 Monitor

R99 crashers are players that have a <R99> tag anywhere within their name/handle, and after entering the Wait Room they send a chat message to everyone. This will crash the client machine of any player in the field, including the player running a Non-Dedicated server. Additionally, the player can add the R99 tag to his name after he has already entered your server. To combat this activity, I’ve developed Rock’s R99 Monitor.

The R99 Monitor comes in two parts… a Detector that searches a player’s handle/name for the R99 string (and variations of it,) and a Monitor that will periodically execute the Detector every few seconds.

The R99 Detector runs every time a new player enters the server, regardless of whether or not the Monitor is running. It searches for strings, or fragments/remnants of strings that use the R99 crashing sequence anywhere within the player’s name/handle. Minor modifications to the routine can cause it to search for additional sequences if you desire. It is rumored that other sequences can cause the same crashing behavior.

The R99 Monitor will operate if $RocksR99Enable is set to TRUE in the xxxAdmin.cs file, or the administrator enables the R99 Monitor with the Alt-Shift-M key. The Monitor is used to look for any player who changes their name/handle after entering the game. If any player is detected with the R99 string within their name/handle, the player will automatically be blisted (added to the Ban List) and then AutoBanned with an appropriate announcement to all other players. This will happen upon entry into the server, or if the Monitor is running and a player edits his name/handle to contain the R99 string. It is optimized so that it only runs if a name has been changed.

Server Flipping

Rock’s Server Admin Package has the ability is change the server configuration on the fly. This is called server-flipping.

Rock’s Server Admin Package uses some redundant efforts to help prevent a server-lockout during flipping. Therefore, the server will always arm it self to execute the default setup. Then, if the server-flip fails for some reason, the default configuration will restart.

Reconfiguring a server via remote control involves too many variables and combinations. This leads to combinatorial explosion… meaning that there are too many combinations to handle in a deterministic manner. Therefore, the package limits the possible server configurations to two, a Default Configuration and a Skirmish Configuration.

The Default Configuration is the configuration that you setup when you setup this package. This is the configuration that is typically used. This Default Configuration will activate if anything happens that might corrupt the server-flipping process.

The Skirmish Configuration is just that… it is meant to support the setup of a one-time skirmish-based server. The term skirmish, however, is only used in a very broad sense. It really represents a temporary alternate server setup that, once it is finished or the server is rebooted again, the Default Configuration will re-activate. However, the skirmish server can be configured in many different ways, within the limitations of what items are tunable from your remote admin machine.

The Skirmish Configuration lets you select the number of teams, the map, the time limit, the server-name, and several other values, all from your remote game-playing machine.

A word about the mission-game: The Skirmish Configuration permits you to select one map. This one map is used for all map sequences. This permits you to warm up prior to the official engagement, then, when all players are present and ready, you can simply cycle the game to the next map (Alt-Shift-C) and have a clean start.

Here’s how you use the Skirmish Configuration and what happens when you initiate the skirmish with the Alt-Shift-S key. Once your Default Configuration is running, you edit your own local copy of your RocksSkirmish.cs file. This is the file that holds all of your skirmish settings such as the mission-map, the team colors, the time limit, etc. The values in that file are passed to the server via the Alt-Shift-S key. When the server receives those values, it will check all of them for validity, then re-write it’s own reserved autoconfig file with those values. The server will then restart in 60 seconds. Note that when the server restarts, all players will lose connection, so a prominent warning is given concerning the restart. When the server comes back online, it immediately overwrites the Skirmish Configuration with the Default Configuration so that any possible failures will restart your Default setup.

When you’re all done with your skirmish, simply hit the Alt-Shift-R key and your server will flip back to its Default Configuration.

The SuperScanner

Rock’s SuperScanner is not your typical component scanner. Its intent is to catch cheat-vehicles, and in this regard, the scanner is much more than a typical vehicle-scanner. It also verifies the validity of vehicle component and weapons parameters. Note that not all parameters can be verified by the server, but it does verify component/weapon sizes in relation to their mount-points.

This scanner works differently than other scanners. It automatically scans vehicles when they drop on the field and attaches the scan results to the vehicle object as a string. Then, when a player scans his targeted vehicle, it simply dumps the vehicle scan-string that was originally generated when the vehicle first dropped onto the field. This little trick cuts down on lag because it doesn't do scanning in real-time. The side effect is that it presents the information of the original, fully functional vehicle rather than the immediate battle-condition of the vehicle. The fully functional information is usually the information that everyone wants anyway.

I measured the elapsed time of the scanning of an Apoc with maximum components loaded. Despite all the work that the scanner is apparently doing, the total elapsed time was beyond the measurement resolution of the timing function, which is down to a millisecond. This means that actual scan time is insignificant... something in the microseconds region on a 1 Ghz P3. Rest assured that when a vehicle drops onto the field, the scan activity will not contribute anything to server-lag.

If the SuperScanner discovers a cheat-vehicle, it will log it in a separate file, add the player to the Ban List (blist him) and then eject the player from the server. Invalid vehicle features can be seen in the log.

You configure the SuperScanner with the control variables in the xxxAdmin.cs file. If the $RocksSuperScan variable is set to TRUE, then the scanner automatically runs on every vehicle at the time they are spawned. Admin Players can always access the scanner with the Alt-I Admin command as long as this variable is set to TRUE.

To permit players in general to also use the SuperScanner with their Scan Key (I-Key) like a traditional component-scanner, just set the $RocksPlayerScan variable to TRUE in addition to the $RocksSuperScan variable.

Don’t forget to turn the SuperScanner off if you are running a game that requires the normal scan activity of the game.

AutoTeam

Typically, Starsiege Team-based servers use only two of the four team colors. But each map doesn’t necessarily use the same two team colors. So, to be able to use Red and Blue on one map, and then Purple and Yellow on another map, the server has to enable all 4 team colors. The game doesn’t manage the colors on a per-map basis.

The AutoTeam feature, which is only operational if TDM or CTF mode, lets you choose an individual map’s team-colors and then it will automatically make sure the number of players-per-team remains balanced between those chosen team-colors. It also has a mode, called “Tagged” mode, where you can place all members of a squad on the same team. The members are identified by the squad-tag in their name. You no longer need to administer some members that might get placed on unused teams.

You select the team-colors in your xxxServer.cs file. If you look in the ExampleTDMServer.cs file, or the ExampleCTFServer.cs file, you will find examples of how to select the colors for each map.

AutoTeam runs in three modes: OFF, UNTAGGED, and TAGGED. You can change to any of these three modes from in-game, by using your Alt-Shift-E Admin control. Hit it once to see the current AutoTeam mode, and hit it again (and again) to rotate through the different modes. The new mode takes effect 10 seconds later.

OFF: If AutoTeam is set to FALSE, then AutoTeam is OFF and all TDM team-color selection works like it always has, and players can get on any team they want. The RocksAutoTeamTag value is ignored.

UNTAGGED: If RocksAutoTeam is set to TRUE, and RocksAutoTeamTag is empty (not set), then AutoTeam is in the untagged mode. Players are automatically placed on any of the "allowed" team-colors and team-balance is automatically maintained. Players cannot select their own teams because it would defeat the automatic team-balancing. An "allowed" team is one of the bit-mapped team colors that you choose in your server-file, one for each map, such as:

$RocksTDMColors0 = 0101;

…where the colors Red and Yellow are chosen for $MissionCycling::Stage0. This addresses the problem where the server typically enables all four teams and players end up dropping on the wrong teams.

TAGGED: If RocksAutoTeam is set to TRUE, and RocksAutoTeamTag is set to a team-tag, like "[CKN]" for example, then AutoTeam is running in the tagged mode. This mode is useful for squad matches. In this mode, the Admin package keeps members of the same squad (thus the tag) on the same team, and players without the tag are automatically placed on one of the remaining allowed team-colors. Of course, if there's only one other allowed team, then all untagged players are placed on that team. Thus, if one side or the other doesn’t have enough players, a team can get outnumbered. To move a player from one team to another, the player should delete or add the tag to his name and then simply change teams, or respawn. This mode also uses the bitmapped "allowed" team colors specified in your xxxServer.cs file.

Note that in both the TAGGED and UNTAGGED modes, the initial team selection is automatically chosen from the set of bitmapped "allowed" team-colors at random. Also note that if AutoTeam is enabled, it will always initialize itself to UNTAGGED mode, even if you have set the RocksAutoTeamTag value. Once all of the players, or enough players, are present, you should use your Admin control to switch the mode to TAGGED and everyone will get redropped onto the proper teams. Then just cycle the map to start your match.

For matches against other squads, I usually set a couple of “warmup” maps as the first two maps in my maplist, and then when everyone is present, I switch to TAGGED mode and I cycle the map to the first match-map.

Extensions

This is how you can add/change/modify the base package to implement some of your own features. The base package is fairly all-inclusive and complete, but some customizations that I’ve provided to others are implemented with this extension feature. Indeed, that’s exactly why I made it extendable.

The file RocksTemplateExt.cs represents a template of how you can add extensions to the base package. Implementing extensions is easy, but it’s also somewhat of a guru effort because you need to handle the return-value properly, and you pretty much need to know what’s going on in the base package. Hopefully, I’ve added enough comments to the RocksTemplateExt.cs file so that you can work your way through it.

A very small example of an extension implementation is in the DMServer/ExampleDMExt.cs file. Note that that file only has one of the extension functions hooked. I use this to plaster up my custom Rules Tab in my game. If you’re not going to hook an extension function, then you don’t need it to be present in your extension implementation.

The RocksTemplateExt.cs file has all extensions present just so you know which ones you might hook. Copy the file to another of your own name, and then edit you file and implement your extensions, deleting those functions that you don’t use. Then edit the $RocksAdminExtensions variable in your xxxAdmin.cs configuration file to reflect the proper filename.

There is also a RocksKeyExt.cs file where you can add your own custom key-codes to control your extension implementation. Stick to codes 100 and above because the Admin Package uses codes below 100. There are some comments in the file to help explain it.

The extension feature could easily warrant an entire document all by itself. However, I think I’ve embedded enough comments in the files for you to successfully implement your own extensions. Pay particular attention to the return value if each function. Many of them don’t have to return anything, but in the ones that do, it’s important that you understand the return codes and when to return them.

Again, the base package is very complete as an Administrator’s package and you don’t need to implement any extensions to use it.

Good luck!

Come see me in my Server.

http://www.rockshq.com/

rock@rockshq.com
Credits

Sentinal{M.I.B.] for his excellent write-up on scripting.

Orogogus’ website for some other scripting how-to information.

The NUTS/NoBS people for their idea about group-admin control. I originally had a single-admin as the controller, but the NUTS/NoBS people wanted me to implement their group-admin as a customization. Accordingly, they gave me their package at the time, which I think Barak wrote, and KnifeEdge was maintaining. After trying to maintain their customization and my normal package for a bit, I realized that it would be much easier if I adopted one and stuck with it. I chose the NUTS/NoBS group admin methodology because it is more flexible, although a bit more complex. I’ve made some efficiency changes, and restructured how it informs all Admin people of admin activity, but the general group-admin idea belongs to NUTS/NoBS/Barak/KnifeEdge, I don’t know exactly who.

Appendix

These are screen-shots of a DM, TDM, and CTF Dedicated Server console windows. They show the proper file execution sequence. Your sequence should be the same except for the filepath locations. In my shots here, I had copied all of the example files up one level to the RocksStuff folder. I recommend you do NOT do that.

The server-set files are the example-files.

Dedicated DM Server

[image: image2.png]
Dedicated TDM Server

[image: image3.png]
Dedicated CTF Server

[image: image4.png]

3Mbits down�256Kbits up

100 Mbit

Cable Modem

Linux-based Astaro Firewall Appliance�(2.4Ghz P4)

100 Mbit

100 Mbit

16-Port Switch

Server Machine�(Dual 800 Mhz P3 with RAID Array)

Client�Machine�(1.0 Ghz)

Client�Machine�(1.0 Ghz) Mhz)

Client�Machine�(1.0 Ghz)

